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FOUNDATIONS* 

Contact problems for non-uniformlyaging multilayered viscoelastic founda- 
tions are studied. It is assumed that the thickness of the top layer is 
much less than the characteristic dimension of tne area of contact. Integral 
equations of mixed problems containing Fredholm and Volterra operators are 
derived and a method for solving them is given. Basic versions of the non- 
uniform aging of a packet of layers are studied and the case in question is 
compared analytically with the classical case. Numerical computations of 
the characteristic parameters are given. 

1. We consider the contact problems of the frictionless impression of a rigid circular 
stamp, using a constant force P, intoamultilayered non-uniformly aging viscoelastic founda- 
tion consisting of: 

1) a thin non-uniformly aging layer and a uniformly aging layer of arbitrary thickness, 
without friction between the layers; 

2) a thin layer, a non-uniformly aging core foundation and a uniformly aging layer, with 
the first two layers ooupled to each other, and resting on the third; 

3) the packet is composed of the layers listed in 21, with zero friction between them. 
We shall call the layer thin if the characteristic dimension of the part of the layer 

stibjec&ed to the active load is much greater than its thickness. The layer thicknesses are 
h,l and H respectively. Smooth contact or coupling withthenon-deformable support occurs 
at the lower edge of the multilayer packet. The surface of the stamp base is described by 
the function g(r), and the region of contact by the inequality r<a. 

we write the eguations of state of the layermaterialsin the form /l/ 

dare eij(t,r,z) and S,j(t,r,z) are the deviators of the strain and stress tensors, respect- 
ively, 3s (t,r,z) is the volume strain, a(t,r,z) is the mean hydrostatic pressure, K (t, T) is 

the tensile creep kernel, C (&I) is d measure of the creep, r and z are cylindrical coordin- 

ates of a point of the body, r,, is the time of application of the load, X \s> is the non- 
uniform aging function, and Band Y denote the instantaneous modulus of elasticity and 
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Poisson's satio, which are both constant. 
below, we shall use the notation that is standard for a cylindrical system of coordinates 

and denote the quantities refeuing to particular layers by the following superscripts: the 
thin layer by 1, the core layer by c, and the uniformly aging layer by 2. 

If b/j!&)<*, then we can show that when a normal load q(r,t) acts on the packet 
layers, we have 

where, in the case of zero friction at the lower boundary of the thin layer we have 

and in the case of coupfing with the core foundation 

of 

(1.1) 

(1.2) 

Cl.31 

(1.4) 

Since the normal stresses ugl and a,' do not vary across the layer thickness (see (l-l), 
(1.4)) and the lower layer ages uniformly, we can apply the correspondence principle /2/ and 
obtain, by virtue of /3/, 

(1.6) 

where w, denote the vertical displacements of the points of the lower layer and Z, is the 
instant it occurs; in the case when the lower edge of the multilayex packet is coupled to the 
non-deformable support, we have 

and in the case of a smooth contact 

c (Lb) = ch2u-1 
sh2u+2u 

Remembering that by virtue of the condition of contact under the stamp m, = 6 (t) -g(r)+ 
and matching the displacements along the lines of interlayer coupling, we obtain from ff.l)- 
(1.5) the fallowing integral equations for the problems posed (8(t) is the rigid displacement 
of the stamp) 



corresponding to the following cases: 

% (1 -VI) EelI - vo) 
+=~(i-vq_2y*)' 9c= 2(1-vv,-2V,r) 

3) the same as in 2), but with 

et= El 
2 (I - VI’) 

The above relations must be supplemented by the static condition 

We will now dwell on some of the properties of the creep measure, the creep kernels and 
the relaxation. According to /1,2/ we have 

(1.11) 

fEC(f, 7)= q(7), VT; ;~qJ(+=Co 

c (t, 7) = c (f - T, 7) = rp (4 f 0 - 4 

where ~(7) is a function reflecting the aging process of the material and f(t -7) character- 
izes its hereditary properties. 

In addition, (P&T) is the resolvent of the kernel K&T)) 

are continuous and bounded functions. 
We shall assume that the hereditary properties of the layer materials are the same, in 

which case the equations of contact problems can be reduced to a single form. 
2. Let us construct the solutions of the integral equations of the axisymmetric contact 

problems (1.9). Since they are mathematically equivalent, we shall consider, to be specific 
Eq.Cl.9) for case 1) with conditions (1.10). Taking into account the notation 

r* irs-l, p+=pa-', t* =t$, 7*-77;* 

x*(z)- x(z)Q, c='/&C%*e;' 

IJ* (r*, f) = q (r, t) f&l, 6* (t*) - 6 (t) a+, g* (79 p g (r) a-’ 

h ED Ha-l, P+ = (2zs&)"P, k+(j;,+i=k(-&,-&)V 

E& (t, z) - Ci+ (t+, r*), Ki* (t*, r*) - & ci* (p, 7+) 

&= 
Ei 

. 2(i-VI) 
(i-1,2) 

and henceforth omitting, the asterisks, we obtain 

cCq(r,~)-_q(r.~)KP(f,4dr] +~q(p.t)*(%*-k)Pdp- 

1 

(2.1) 

t 1 

1 Sq(p,r)k(+, ;),W+-rt,--dd-= 

ii -g(r) @<a, i<t-GT<d 

K1° (t, r) - h-’ i K1 (t + x (z), r -I- x (2)) dz 
0 



xn accordance with /4,5/ we consider the integral equation equivalent to (2-l) 

ms_.1q(r,f)-q(r,i)-Sq(r,~)lY~(t.r)h] +S[q@.t)-q(pli)lk(e,i)PdP- 

1 * 

$+e shall seek the solution of (2.3) in the form 

q(rt;t)=qo(r) +a(r*& jt7r@JwP==0 

0 

6 (t) = 6Y (t) + 60 -t 2 h/i(4 

Substituting (2.41, (2.5) into (2.31, we obtain 

@C?l=jl &ibi@) -Vi PII 

Let us investigate Eq.(2.71. 

Theorem 1. The operator A 

(~~=~~~P~~(~,~)P~P) 
0 
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(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

is completely continuousselfconjugate and positive definite from &(Q)into La(Q) where P 
is the unit circle. The proof is easy, and we shall merely note that 

5 ~q+, +-)prdpdr=K~<oo (hE(O.00)) 
0 IO 

(2.9) 

Theorem 2. A solution of Eq.(2.7) exists in the space I%,@) and is unique for any 
value of C, hi (0,ce). The proof is obvious from Theorem 1 and the postiveness of F. 

We shall seek the solution of (2.7) in the form of a series in terms of a complete, 
orthonormalized in L,(Q) system of polynomials P,,,* (r) (Pm(z) is the Legendre polynomial) 

pm*(r)iE~G7Z?P,(i-2r3 fm=O,i,2...l 

1 s P,*(r)rdr= 
0 I 2+, m-0 

0, m#O 

f2.10) 

Infact. let 

(2.11) 
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Writing the kernel of the integral equation in the form of a double serzes in terms of 
the polynomial system chosen 

where, using the 

and substituting (2.111, (2.121 into (2.7) we obtain (S, is the Kronecker delta) 

cd, +P : dj~~~~}=~~~ s = 2Pd;;’ 
j* 

(2.13) 

By virtue of the Parseval relation, (2.9) and (2.12), we obtain 

(2.14) 

i.e. the operator on the left side of (2.13) is completely continuous, selfconjugate and 
positive definite from 4 into 4. Solution (2.13) exists and is unique for all C, hE(O,ao) 
and can be found using the reduction method /7/. 

Let us now consider Eq. (2.8). Wcz introduce a space of functions square integrable in 
&I , whose surface integral is equal to zero. We denote this space by _&a"(Q). 

Theorem 3. The space .&a"@) fs a complete Hflbert space , any function of which can be 
written in terms of a series in a chosen system of polynomials, beginning with the first. 

Let {f,J be a fundamental sequence from La“(Q). Since ~~~(~)~~~(~), therefore $f*? 
converges at least to fEL,M, i.e. 

lif-fnih~)<~t n>N (2.15) 

We shall show that fEL,‘(Q). In fact, 

and this, with (2.15) and the fact that f is independent of n, yields 

which proves the completeness 
properties of the polynomials 

Theorem 4. The operator 

f f&=-0 
Q 

of L<(Q). The last assertion of the theorem follows from the 
(2.10). 

B 

is completely oontinuous, selfconjugate, positive definite and acts from L,“(Q) into L; (62). 
The theorem can be proved using the obvious estimate bee f2.1411 

Let $t be the eigenvalues of the operator A, and q the eigenvalues of B. We can assert 

that /8/ 

B;;t<&<a-l. (2.16) 
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Moreover, according to Theorem 4 and /9/, the eigenfunctions $i of the operator B 
corresponding to various eigenvalues air form a complete orthogonal system in L,“(Q). 

Let us construct this system. We write the eigenfunctions in the form (see Theorem 3) 

*i W = >Sl ajiPI* (4 (2.17) 

Then at are given by 

(2.18) 

Substituting a, into the equation 

Cfiji*nj(h)U3jishi+8h (n-O,&...; i--1,2,...) (2.19) 

we obtain {Uji} E 1, (i = 0.1, . . .), which can always be done by virtue of (2.16). We note that 
{aj'} 0' = i, 2...) will satisfy relation (2.18), i.e. will yield the aoefficients of the expans- 

ions of the eigenfunctions. In fact u@* ==AwlA1 where A is the fundamental determinant of 
the system (2.19) and A1 is the auxilliary determinant obtained from the previous one by 
replacing the first column by the elements {l,O,...,O,. ..). But Al is the determinant of 
system (2.18), therefore Al = 0 aa a: = 0 (I = 1, 2,...). 

The eigenfunctions of the operator B obtained have the following property (see (2.19)): 

CC&$i=*i+1/2 (i=1*2*.**) (2.20) 

To facilitate the subsequent transformations we write 

(2.21) 

We shall seek the solution of (2.8) in the form of a series in terms of a complete, orthogonal 
in L*‘(Q) system of functions {a (r)), i.e. 

q1 (r, t) = jl a (4 qi (4 

The system (qi(r)), constructed using formulas (2.17)-(2.21) has the following property: 

(2.23) 

Substituting (2.22) and (2.23) into (2.8) and equating the coefficients of q,(r) and 6,, 
we obtain 

* 

(2.24) 

(2.25) 

The sequence {z,(S)} is obtained form the obvious relation 

q(rrU=qO(r) +$lzi(Qqi(r) (2.26) 

In facts, the function q,,(r) has already been determined and q(r.1) can be found in exactly 
the same manner from (2.1) for t= 1, and if g(r)= L,(Q), aen 

q (r, 1) = j$ B$j* (r) (2.27) 

0 

cB,+ 
2 

r,(h) B,= %6m-g,, 

05 
P=+(n=O,i,...), g(r)= 
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substituting (2.111, (2.17), (2.27), into (2.26) we obtain 

B, = D, (2.28) 

Suppose now that 6, = at* , and let us investigate the operator on the left side of (2.28). 
We write 

~-Ial'a~ll, s-(zj(i)). ba(l/Z(Bj--j)} 

Then (2.28) takes the form 

LJz=b (2.29) 

Theorem 5. The operator D is completelycontinuousand acts from 1, into 4. In fact, 

since (oi}~ 2, (see (2.19)) and by Shur's theorem /lo/ 

$i8<~ 

Theorem 6. The operator D-l exists. We note that the columns of the matrix of the 
operator Dcontain the coefficients of the expansion of the linearly independent eigenfunc- 
tions q,(r), and by virtue of the positive definiteness of i9, all q-l> 0. Then the matrix 
columns are linearly independent and its determinant is therefore non-zero. Using Theorems 5 
and 6 we can conclude that an inverse of Dexists but is unbounded. Applying the method of 
reguarlisation /ll/ we obtain the approximate solution of (2.29), and 

Substituting z1 (i) into (2.24) we obtain 

z,(t)=zi(1) [~+j&(V)d~] 

where l&(&r) is the resolvent of the kernel KJ(& T), and yj(t) are found from (2.25). Finally, 
making use of relations (2.5), (2.6) we obtain 

Theorem 7. The series 

converges uniformly in L:(Q) in t=[i,T](T( co) and defines there a function that is 
continuous in time. 

Theorem 8. The series 

converges in C[1, T] uniformly in tE[[1, T] to the function belonging to this space. 
Omitting the detailed proofs, we merely note that the functions are constructed with the 

help of Shur's theorem (see Theorem 5), estimate (2.30) and the properties of the rheological 
characteristics of the medium: (1.111, etc. 

Thus we have obtained the functions of contact stresses continuous in t in LI (hl). and a. 
time-continuous settling 
question. 

3. Let us consider 

Then by (2.6) we have 

function, both satisfying the integral equation of the problem in 

the basic cases of non-uniform aging of a two-layer foundation. Let 

9, (‘c+ x(z)) = c,+ &e-8(=+*)) 

e", (%) = C, + Ad&c-B=, p = A-’ i e-&W (I) dz (3.1) 
0 
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i 
will affect precisely these elements least. Then x(z)>0 and 

6s 
4 

f O<pii. 
I Let us investigate the limiting cases of a change in the non- 

uniform aging parameter p. 
Let c 11. Then, provided that the layers are of the same 

4. 
material and %=O, the pressure distribution under the stamp will 
be the same as that in the analogous elastic problem. In fact we 
have here the case of uniform aging of a packet of layers when the 
creep does not affect the distribution of the contact stresses. 

Let c=O, Then the upper layer will work in accordance with 

2 the type of foundation whose model obeys the Volterra lawoflinear 
0 0.5 f heredity /12/. The version p=8 corresponds to the uase of piece- 

wise uniform aging of the foundation in question. 
Fig.1 Note that if 

fP -v)=i -,-M-r) (3.2) 

then all functions of time appearing in the solution are obtained in explicit form, since we 

The non-uniform aging parameter p andthe instant of the preparation Of the lower layer T, 

together completley determine the non-uniform aging of a packet of layers. 
The case of natural aging of a layer occurs when the growth of the elements ofitslower 

edge is greatest, and this corresponds to the process of erectingatop layer on the bottom 
layer. Then we can show that -i<x(~)(O, and by virtue of (3.1) i<r<@. 

The case of artificial aging of a layer will occur when the growth of the elements of its 
bottom edge is minimal. Indeed, it is reasonable to assume that 
the effect of external factors (irradiation, temperature, etc.) 

shall use the Arutiunian kernels f2l. 
As an example consider the contact problem for a two-layer concrete packet lying without 

friction onanon-deformable support. 
pressions (3.11, (3.2), and 

We shall assume that the creep measure is given by ex- 

g(r) = 0; P = 1; 5 fi 8; c = 0. 2; Co = 0.5522: A,, = 4; s, = 0 

1) The case of natural aging 

$ = 2,325; y= 4.5; %* = 75 days: i<p<& 
2) The case of artificial aging 

b = 0.31; 7 = 0.e; T. = 10 days ; o< p < i 

Fig.1 shows the distribution of contact stresses relative to r,t and the parameter of 
non-uniform hardening p; the dash-dot line refers to t=i and any value of 
tion), the solid line to t= 2, p = 10 (natural aging), and the dashed line to 

p (elastic solu- 

(artificial aging). Fig.2 shows the (solid lines) the relation between 
t= ii @& = OS 

q,,,ft,@=~(O, 6 #and p for various fixed t for case 1). 
*- @. IQ = P(i. t, c). 

Curves f--Q correspond to *mrx(~,05,p), 
~~~~(2,~),4~~,(2,~),~~~~(1,05,~). It should be noted that the maximum (minimum) contact pressures 
decrease (increase) as the natural inhomogeneity increases (as c increases). 

0 0.5 t 

4ms 
%in 

Fig.2 Fig.3 

Analogous dashed lines in Fig.2 refer to case 21, and‘ 
qm,,(ii, p) corresponds to curves l-4. 

9-z (ii. )r)* cr,, 0.5, Ph Pm10 (1.5. PI, 
We see that the maximum (minimum) contact stresses in- 

crease (decrease) as the artificial non-uniformity increases (as p decreases from 1 to 0). 
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Fig.3 shows the relation El(t) for fixed values of C, for the cases of natural and forced 
aging (the solid and dashed lines, respectively). The function O(t) increases with time t 
and tends to a limiting value, which is larger, the larger the parameter pX 

The author thanks N.Kh. Arutiunian and V.M. Aleksandrov for their interest. 
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STEADY STATE BOMDARY FLOWS IN THE LIGHT OF THE GEHERALIZED KARMAN THEORY* 

V.V. NOVOZBILOV 

Results are given, based on the generalization in /1/ of the Karman theory 
of turbulence, obtained within the last ten years, The advantages and 

disadvantages of the model of turbulent flows used are analyzed and compari- 
sons are made with other models. 

1. Blasius's empirical formula of (1911) represents the first significant success in 
the applied theory of turbulence 

li R0'I' = 0,316 (1.1) 

The formula expresses the dependence of the coefficient of resistance on the Reynolds number 
in steady state flow in a straight pipe of circular cross-section. However, the relationship 

had no connection with the Reynolds equation and was therefore considered to represent an 
achievement in hydraulics rather than hydrodynamics. In the 1920-s Prandtl proposed, while 

developing the Reynolds' and Bussinesq's ideas, the phenomenological theory of turbulentsteady- 
state flows, i.e. the mixing-length theory. 

In fact, the problem was that of constructing a model of a non-linearly viscous fluid 
the laminar flow of which would be identical (in velocity profiles and stress distribution) 
with the averaged turbulent flow (with analogous boundary conditions). Prandtl's idea was 

complemented by Karman who put forward the idea of the selfsimilarity of steady-state turbul- 
ent flows. As a result a solution was obtained for the averaged turbulent flow in a straight 
pipe of circular cross-sectioxl, as well as results for the velooity profiles, and the relation 
h= f(Re), which agreed well with experimental data. The latter relation was practically 
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